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Lecture Notes for Math 5630/6630 Fall 2024

Note 9: Spline Interpolation

Tags: math.na Date: 10/08/2024

Disclaimer: This lecture note is for math 5630/6630 class only.

Let us review polynomial interpolation’s error estimate

f(x)− pn(x) =
f (n+1)(ζ)

(n+ 1)!

n∏
i=0

(x− xi).

The error estimate may not be small if f (n+1) grows fast as n → ∞ (Runge Phenomenon), thus
high-order polynomial interpolation is often a “bad” idea for practical problems.

1 Spline Interpolation

If we cannot afford a large degree n, then polynomial interpolation can only be applied to short
intervals. Thus it is possible to use polynomial interpolation only locally (on subintervals). Globally,
this constructs a piecewise polynomial interpolation.

Let the interval be divided into smaller pieces

a = x0 < x1 < · · · < xn = b.

and use a low-degree polynomial interpolation in each subinterval [xi, xi+1], i = 0, · · · , n− 1. The
polynomial pieces, denoted by ϕi(x), are then glued together to construct a continuous function.
This function, denoted by sk(x), is a spline of degree k if

sk(x) = ϕi(x) ∈ Πk, x ∈ [xi, xi+1], i = 0, 1, · · · , n− 1.

and sk ∈ Ck−1([a, b]). The spline function sk is (k − 1) times continuously differentiable and
piecewise polynomial of degree k.

Then the space of splines sk will be (n+ k) dimension: each interval has (k + 1) dimensions, each
interface imposes k constraints, therefore n(k+1)− (n− 1)k = n+ k dimensions. This shows that
to determine a spline on the nodes uniquely, we will require n + 1 interpolation values and k − 1
additional constraints. Usual choices are

1. periodic splines. s
(m)
k (a) = s

(m)
k (b) for m = 0, 1, . . . , k − 1.

2. natural splines. s
(l+j)
k (a) = s

(l+j)
k (b) = 0, j = 0, 1, . . . , l − 2 and k = 2l − 1 with l ≥ 2.

In the following, we discuss some useful examples of spline.
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1.1 Linear Spline

The simplest spline is the linear spine, that is, deg(ϕi) = 1, i = 0, 1, · · · , n− 1.

On each interval [xi, xi+1], the function s(x) is defined by

sk(x) = ϕi(x) = f(xi) + f [xi, xi+1](x− xi), x ∈ [xi, xi+1]

Geometrically, the sk(x) graph connects the data points with short segments.

The interpolation error can be derived from the previous error formula for two interpolation nodes.
Let h = max1≤i≤n(ti − ti−1). On the interval [xi−1, xi], the error of interpolation is

|f(x)− s1(x)|≤
maxζ∈[xi−1,xi]|f ′′(ζ)|

2!
|(x− xi−1)(x− xi)|≤

maxζ∈[xi−1,xi]|f ′′(ζ)|
8

h2.

Remark 1.1. Once |f ′′| is not uniformly bounded, the interpolation error will be replaced by
the modulus of continuity.

1.2 Cubic Spline

The cubic splines are particularly important in practice. Let a = x0 < x1 < · · · < xn = b, and
the corresponding values are yj , j = 0, . . . , n. The constraints for cubic splines are: piecewise
polynomial of degree 3 and continuous second derivative.

Denote the interpolation spline as s3, then s3
′′ is a piecewise linear function. On the sub-interval

[xj−1, xj ], it can be represented by

s3
′′(x) = Mj−1

xj − x

hj
+Mj

x− xj−1

hj
, j = 1, . . . , n,

where hj = xj − xj−1, Mj = s3
′′(xj). Integrating the above formula twice,

s3(x) = Mj−1
(xj − x)3

6hj
+Mj

(x− xj−1)
3

6hj
+Aj(x− xj−1) +Bj

The additional constants Aj , Bj can be determined by imposing f(xj−1) = yj−1 and f(xj) = yj .
That is

Aj =
yj − yj−1

hj
− hj

6
(Mj −Mj−1), Bj = yj−1 −Mj−1

h2j
6
.

Now we will determine the constants Mj using the first derivative’s continuity.

s′3(x
−
j ) = s′3(x

+
j ), j = 1, . . . , n− 1.

That is equivalent to j = 1, . . . , n− 1,

s′3(x
−
j ) = Mj

hj
3

+Mj−1
hj
6

+
yj − yj−1

hj

= −Mj
hj+1

3
−Mj+1

hj+1

6
+

yj+1 − yj
hj+1

= s′3(x
+
j ).

(†)
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We can write the corresponding equations into a tridiagonal linear system

h1
6

h1+h2
3

h2
6

h2
6

h2+h3
3

h3
6

. . .
. . .

. . .

hn−1

6
hn−1+hn

3
hn
6





M0

M1

...

Mn


=



y2−y1
h2

− y1−y0
h1

y3−y2
h3

− y2−y1
h2

...

yn−yn−1

hn
− yn−1−yn−2

hn−1


In practice, the system will be rescaled for numerical stability.

h1
2(h1+h2)

1 h2
2(h1+h2)

h2
2(h2+h3)

1 h3
2(h2+h3)

. . .
. . .

. . .

hn−1

2(hn−1+hn)
1 hn

2(hn−1+hn)





M0

M1

...

Mn


=



d1

d2

...

dn−1


where dj = 3

hj−1+hj

[
yj−yj−1

hj
− yj−1−yj−2

hj−1

]
. The above system still lacks 2 more constraints, since

the matrix is of size (n − 1) × (n + 1). Then we can apply the periodic spline or natural spline
conditions. For example, if the natural constraint is applied: s3

′′(a) = s3
′′(b) = 0. We should have

two more equations:
M0 = Mn = 0.

Then we can simply ignore the first and last columns of the matrix (also M0 and Mn). If the
periodic constraint is imposed, then we can add two more constraints: M0 = Mn and

−M0
h1
3

−M1
h1
6

+
y1 − y0

h1
= Mn

hn
3

+Mn−1
hn
6

+
yn − yn−1

hn
.

In both cases, the resulting linear system is still tridiagonal and the solution takes O(n) time
complexity with the Thomas algorithm.

Another popular choice to complete the matrix is to impose the constraints in the similar form on
x0 and xn:

2M0 +
h1

h0 + h1
M1 = d0,

hn
hn + hn+1

Mn−1 + 2Mn = dn,

where h0 = hn+1 = 0 and d0 = d1, dn = dn−1 are assumed.

The error estimate for the cubic spline can be derived in a way similar to the Lagrange polynomial
interpolation. The following result is attributed to Charles Hall (1968).

Theorem 1.2. Let f ∈ C4([a, b]) and a = x0 < · · · < xn = b be a set of nodes. Then the natural
cubic spline s3 interpolating f satisfies

∥f − s3∥∞≤ 5

384
∥f (4)∥∞h4,
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where h = maxj |xj − xj−1|.

Proof. Here we only state the rough idea to prove the error bound. Let u(x) be the piecewise
Hermite interpolation polynomial that

u(xj) = f(xj), u′(xj) = f ′(xj),

then one can estimate

max
x∈[xj ,xj+1]

|u− f |≤ 1

24
∥f (4)∥∞(x− xj)

2(x− xj+1)
2 ≤ 1

384
∥f (4)∥∞h4.

On the subinterval [xi, xi+1], s3 and u are both cubic polynomial interpolations, thus

u(x)− s3(x) =
(x− xi)(xi+1 − x)

(xi+1 − xi)

(
e′(xi)

xi+1 − x

xi+1 − xi
− e′(xi+1)

x− xi
xi+1 − xi

)
,

where e(x) = f(x)− s3(x). Therefore,

∥f − s3∥∞ ≤ ∥u− s3∥∞+∥f − u∥∞

≤ h

4
max
0≤i≤n

|e′(xi)|+
1

384
∥f (4)∥∞h4.

(∗)

Using (†), we find that

1

hj

[
2s′3(xj) + s′3(xj−1)

]
+

1

hj+1

[
2s′3(xj) + s′3(xj+1)

]
=

3(yj − yj−1)

h2j
+

3(yj+1 − yj)

h2j+1

,

Using Taylor expansion locally at xj , there exist ζ ∈ (xj−1, xj) and ξ ∈ (xj , xj+1) that

2e′(xj) + e′(xj−1)

hj
+

2e′(xj) + e′(xj+1)

hj+1
=

1

24

[
−h2jf

(4)(ζ) + h2j+1f
(4)(ξ)

]
.

Suppose max0≤i≤n|e′(xi)| attains its maximum at node xk, then∣∣∣∣2e′(xk) + e′(xk−1)

hj
+

2e′(xk) + e′(xk+1)

hk+1

∣∣∣∣ ≥ hj + hj+1

hjhj+1
|e′(xk)|.

Therefore, by AM-GM inequality,

max
0≤i≤n

|e′(xi)|≤
hjhj+1

24(hj + hj+1)
(h2j + h2j+1)∥f (4)∥∞≤ 1

24
h3∥f (4)∥∞.

Finally, combined with the estimate (∗) will arrive at the desired bound.


