Math 5630/6630 Fall 2024

Homework 7

Tags: Runge Kutta Due Date: 12/11/2024 11:59PM CST

1 Homework Problems

This part of the homework assignment should be submitted via Canvas. You can scan the answers into PDF files, or typeset them in Word or L^AT_EX, then convert/compile them into PDF files.

Problem 1.1. Use the Taylor series to show that the forward Euler method

$$y_{n+1} = y_n + h f(t_n, y_n)$$

has an error of $\mathcal{O}(h)$ for the local truncation error.

Problem 1.2. Use the Taylor series to show that the midpoint Euler method

$$y_{n+1} = y_n + hf(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1), \quad k_1 = f(t_n, y_n)$$

has an error of $\mathcal{O}(h^2)$ for the local truncation error. You will need

$$y''(t) = \frac{d}{dt}f(t,y) = \partial_t f(t,y) + \partial_y f(t,y)y'(t) = \partial_t f(t,y) + \partial_y f(t,y)f(t,y).$$

1.1 Extra Problems for MATH 6630

Problem 1.3. As a generalization of Problem 1.2, show that

$$y_{n+1} = y_n + h(b_1k_1 + b_2k_2), \quad k_1 = f(t_n, y_n), \quad k_2 = f(t_n + a_2h, y_n + c_2hk_1)$$

can achieve $\mathcal{O}(h^2)$ local truncation error if

$$b_1 + b_2 = 1$$
, $b_2 a_2 = \frac{1}{2}$, $b_2 c_2 = \frac{1}{2}$.

2 Programming Assignments

Implement the following program tasks using your favorite programming language. The Python or MATLAB starter kit is available at GitHub Link. Follow the guidelines there for your submission.

Problem 2.1. Implement three methods to solve the ODE y' = f(t, y) with initial condition $y(0) = y_0$.

(a) Forward Euler: $y_{n+1} = y_n + hf(t_n, y_n)$.

(b) Midpoint Euler:
$$y_{n+1} = y_n + h f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1), k_1 = f(t_n, y_n)$$

(c) 4th order Runge Kutta:

$$y_{n+1} = y_n + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$k_1 = f(t_n, y_n),$$

$$k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1),$$

$$k_3 = f(t_n + \frac{h}{2}, y_n - \frac{h}{2}k_2),$$

$$k_4 = f(t_n + h, y_n + hk_3).$$

Problem 2.2. Use your Runge Kutta method (RK4) to solve the following ODE

$$y' = t(y - t\sin t), \quad y(0) = 1$$

over the domain $t \in [0, 10]$.

- i. Plot your numerical solutions (with different h) along with the exact solution $y_{exact} = t \sin t + \cos(t)$.
- ii. Does the numerical error satisfy the theoretical estimate $\mathcal{O}(h^4)$? Why or why not? Answer that with comments in the submission script.

2.1 Extra Problems for MATH 6630

Problem 2.3. There are several 4th-order Runge Kutta methods. Besides the usual RK4 method, there is another 4th-order method called $\frac{3}{8}$ -rule (shown as the following formula).

$$y_{n+1} = y_n + \frac{h}{8} (k_1 + 3k_2 + 3k_3 + k_4)$$

where

$$k_1 = f(t_n, y_n),$$

$$k_2 = f(t_n + \frac{h}{3}, y_n + \frac{h}{3}k_1),$$

$$k_3 = f(t_n + \frac{2h}{3}, y_n - \frac{h}{3}k_1 + hk_2),$$

$$k_4 = f(t_n + h, y_n + hk_1 - hk_2 + hk_3).$$

Implement this $\frac{3}{8}$ -rule and test with the Problem 2.2. Compare $\frac{3}{8}$ -rule with RK4 in total running time and the global errors, and put your conclusions in the comments.