Math 5630/6630 Fall 2024

Homework 3

Tags: Interpolation (I)

Due Date: 10/17/2024 11:59PM CST

1 Homework Problems

This part of the homework assignment should be submitted via Canvas. You can scan the answers into PDF files, or typeset them in Word or L^AT_EX, then convert/compile them into PDF files.

Problem 1.1. Find a cubic polynomial passing through (-3,3), (-1,1), (1,1), (3,3). Represent it using Lagrange polynomials.

Problem 1.2. Let $f(x) = \sin(\pi x)$. Estimate the error using polynomial interpolation at Chebyshev nodes on [-1, 1]. What is your estimated minimal degree to achieve an error of 10^{-6} ?

Problem 1.3. Let $f(x) = \sin(\pi x)$. Estimate the error using polynomial interpolation at equally spaced nodes on [-1,1]. What is your estimated minimal degree to achieve an error of 10^{-6} ?

1.1 Extra Problems for MATH 6630

Problem 1.4. Let $\mathcal{X} = \{x_0, x_1, \dots, x_n\}$ be a set of distinct real numbers, and let $L_j(x)$ be the Lagrange polynomials on \mathcal{X} , $j = 0, 1, \dots, n$. Suppose f(x) is a polynomial of degree n. Use the uniqueness of polynomial interpolation to explain why

$$f(x) = \sum_{j=0}^{n} f(x_j) L_j(x).$$

Problem 1.5. The Chebyshev nodes are the roots of Chebyshev polynomials of 1st kind on [-1,1]. These nodes do not include the endpoints ± 1 . To include the endpoints in the interpolation nodes, we can consider the Chebyshev extreme nodes,

$$z_k = \cos\left(\frac{k}{n}\pi\right), \quad k = 0, \dots, n.$$

i. Let Chebyshev polynomial $T_n(x) := \cos(n \arccos x)$. Show that

$$\frac{d}{dx}T_n(x) = \frac{n\sin(n\arccos x)}{\sin(\arccos x)},$$

and $\frac{d}{dx}T_n(x)$ is a polynomial of degree (n-1) of leading coefficient $n2^{n-1}$.

- ii. Show that $\frac{d}{dx}T_n(z_k)=0$, $k=1,\cdots,n-1$.
- iii. The "Fundamental Theorem of Algebra" implies

Theorem: If p(x) is a polynomial of degree n with leading coefficient 1 and roots x_k , $k = 0, \dots, n-1$, then

$$p(x) = \prod_{i=0}^{n-1} (x - x_k).$$

Use this theorem and (i), (ii) to derive

$$\prod_{k=0}^{n} (\cos \theta - z_k) = \frac{-\sin \theta \sin(n\theta)}{2^{n-1}}.$$

iv. Show that the Chebyshev extreme nodes satisfy

$$\max_{x \in [-1,1]} \prod_{k=0}^{n} |x - z_k| \le \frac{1}{2^{n-1}}.$$

It is slightly worse than the Chebyshev nodes but the endpoints are included.

2 Programming Problems

Implement the following program tasks using your favorite programming language. The Python or MATLAB starter kit is available at GitHub Link. Follow the guidelines there for your submission.

Problem 2.1. Implement Lagrange polynomial interpolation.

Problem 2.2. Use equally spaced nodes and Chebyshev nodes to compute the Lagrange polynomial interpolation for $f(x) = \frac{1}{1+25x^2}$ and $g(x) = \sin(\pi x)$ on [-1,1]. Record the interpolation errors for different degrees. Comment on the interpolation error's trend as the degree increases (especially for equally spaced nodes).

2.1 Extra Problems for MATH 6630

Problem 2.3. Repeat the Problem 2.2 with the Chebyshev extreme nodes (see Problem 1.5) and Comment on the results compared with the Chebyshev nodes.