Math 5630/6630 Fall 2024

Homework 1

Tags: Floating Point Arithmetics Due Date: 09/17/2024 11:59PM CST

1 Homework Problems

This part of the homework assignment should be submitted via Canvas. You can scan the answers into PDF files, or typeset them in Word or LATEX, then convert/compile them into PDF files.

Problem 1.1. Given a floating point system $(\beta, t, L, U) = (10, 4, -3, 3)$, where β is the base, t is the number of significant digits, L and U are the lower and upper bound of the exponent respectively.

- i. What are the floating point representations of the real numbers x=4.312809 and y=0.4312809 if the usual rounding strategy is used? (note that the first digit $d_0 \neq 0$)
- ii. What is the rounding unit η of this floating point system?
- iii. Which of the following four numbers will cause the problem of underflow or overflow in this floating point system?

Problem 1.2. The function $f_1(\alpha, h) = \sin(\alpha + h) - \sin(\alpha)$ can be transformed into another form, $f_2(\alpha, h)$ using the following formula

$$\sin(A) - \sin(B) = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right).$$

Thus f_1 and f_2 have the same values under exact arithmetic. In the following, we study which formula is better for calculating the approximation for $f'(\alpha)$ by

$$\frac{f(\alpha+h) - f(\alpha)}{h}, \quad f(x) = \sin(x).$$

- i. Derive $f_2(\alpha, h)$.
- ii. Suppose the evaluations of functions **cosine** and **sine** do not suffer from rounding errors (but all basic operations still do). Suggest a formula that avoids cancellation errors. Briefly explain why you made this suggestion.

Problem 1.3. Suppose a machine with a floating point system $(\beta, t, L, U) = (10, 8, -50, 50)$ is used to calculate the roots of the quadratic equation

$$ax^2 + bx + c = 0,$$

where a, b, c are given, real coefficients (in the floating point system). For each of the following, state the numerical difficulties that arise if one uses the standard formula

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

for computing the roots. Explain how to overcome these difficulties (when possible).

i.
$$a = 1$$
; $b = -10^5$; $c = 1$.

ii.
$$a = 6 \cdot 10^{30}$$
; $b = 5 \cdot 10^{30}$; $c = -4 \cdot 10^{30}$.

iii.
$$a = 10^{-30}$$
; $b = -10^{30}$, $c = 10^{30}$.

Problem 1.4. Consider the linear system

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

with $a, b \in \mathbb{R}_+$.

- i. Find the solution (x, y) in terms of a and b.
- ii. If $a \approx b$, what is the numerical difficulty in solving the linear system?
- iii. Suggest a numerically stable formula for computing the sum z = x + y given a and b.
- iv. Determine whether the following statement is true or false, and explain why:

"When $a \approx b$, solving the linear system for x and y is ill-conditioned ¹ but the problem of computing x + y is NOT ill-conditioned."

In this context, ill-conditioned means if you solve the same linear system with right-hand side as $(1 + \varepsilon_1, \varepsilon_2)^T$ that $|\varepsilon_1|, |\varepsilon_2|$ are tiny, the error in your desired quantity is huge.

1.1 Extra Problems for MATH 6630

Problem 1.5. We study the rounding errors of summation $S_n = \sum_{j=1}^n x_j$, where $x_j \in \mathbb{R}$.

i. Show the rounding error of S_n using naive summation, that is,

$$S_j = S_{j-1} + fl(x_j), \quad S_0 = 0,$$

is bounded by $\frac{n\eta}{1-n\eta}\sum_{j=1}^{n}|x_j|$.

ii. Define $T(i,k) = \sum_{j=i}^{k} x_j$ to compute the summation over a range of indices. A recursive idea is to compute T(i,k) by

$$T(i,k) = T(i, \lfloor \frac{i+k}{2} \rfloor) + T(\lfloor \frac{i+k}{2} \rfloor + 1, k)$$

until the range only contains one index. If we apply this idea to the summation as $S_n = T(1,n)$, show this summation method results in a rounding error bounded by $\frac{H\eta}{1-H\eta}\sum_{j=1}^{n}|x_j|$ with $H = \lceil \log_2 n \rceil + 1$.

Problem 1.6. As a followup of Problem 1.2. Now we assume that the evaluations of **cosine** and **sine** have rounding errors ²

$$fl(\cos(A)) = \cos(A)(1+\delta), \quad |\delta| \le \eta.$$

$$fl(\sin(A)) = \sin(A)(1+\delta), \quad |\delta| \le \eta.$$

i. Show that the truncation error

$$\left| \frac{f(\alpha+h) - f(\alpha)}{h} - f'(\alpha) \right| \le \frac{h}{2}, \quad f(x) = \sin(x).$$

ii. Suppose the division $\frac{h}{2}$ and the addition $\alpha + \frac{h}{2}$ have no rounding errors ³. Show that the **total** error (truncation error and rounding error) between $f_2(\alpha, h)$ and $f'(\alpha)$ is bounded by

$$\frac{h}{2} + ((1+\eta)^5 - 1)$$

²See the source file of sin and cos for a reference, the rounding error is actually around $0.55\,\text{ULP} = 1.1\eta$.

³It is often true if $h = 2^{-p}$ for a moderate size p.

iii. Suppose the addition $\alpha + h$ has no rounding error, that is, $fl(\alpha + h) = \alpha + h$. Show that the **total error** between $f_1(\alpha, h)$ and $f'(\alpha)$ is bounded by

$$\frac{h}{2} + \frac{2\eta(1+\eta)^2}{h} + (2+\eta)\eta$$

and find the minimum of this bound along with its corresponding h.

Problem 1.7. (Optional) The evaluation of monomial $P_n(x) = x^n$ can be computed in several ways. The most naive way computes each term x^n by sequential multiplications

$$P_n(x) = fl(x) | * P_{n-1}(x).$$

There is another common pairwise algorithm.

$$P_n(x) = \begin{cases} P_{n/2}(x) & \text{is even} \\ fl(x) & \text{if } P_{(n-1)/2}(x) \\ fl(x) & \text{odd} \end{cases}$$

Roughly estimate the rounding errors of computing $P_n(x)$ using the above naive method and the pairwise algorithm. Here you may assume x > 1.

2 Programming Problems

Implement the following program tasks using your favorite programming language. The Python or MATLAB starter kit is available at GitHub Link. Follow the guidelines there for your submission.

Problem 2.1. If you are using MATLAB, run the following commands write down what you see, and briefly explain why.

- (a). eps
- (b). realmax
- (c). realmin
- (d). 1 + eps 1
- (d). 1 + eps/2 1
- (e). realmin/1e10
- (f). realmin/1e16
- (g). realmax*10

If you are using Python, run the following commands write down what you see, and briefly explain why.

- (a). import sys;print(sys.float_info.epsilon)
- (b). import sys; print(sys.float_info.max)
- (c). import sys;print(sys.float_info.min)
- (d). import sys;print(1 + sys.float_info.epsilon 1)
- (d). import sys;print(1 + sys.float_info.epsilon /2 1)
- (e). import sys;print(sys.float_info.min/1e10)
- (f). import sys; print(sys.float_info.min/1e16)
- (g). import sys;print(sys.float_info.max*10)

For other programming language users, please adjust the above commands to your language.

Problem 2.2. The famous Archimedes' formula for π calculates the perimeters of regular polygons inscribing or circumscribing a circle of unit diameter. Starting from hexagon, $p_0 = \frac{1}{\sqrt{3}}$, the iterative formula can be written in two equivalent forms:

$$p_{n+1} = \frac{\sqrt{1 + p_n^2} - 1}{p_n}$$

and

$$p_{n+1} = \frac{p_n}{1 + \sqrt{1 + p_n^2}}.$$

where p_n is the length of each side of the regular polygon with $6*2^n$ sides. The approximation to π is computed by $s_n = 2^n*6*p_n$. Tabulate the error $|s_n - \pi|$ for various n using the above two iterative formulae. Explain the results in the **comments** of the submission.

Problem 2.3. Suppose $a, b \in \mathbb{F}$, the rounding error for the summation s = fl(a + b) can be computed using the Kahan compensated summation

$$fl(fl(s-a)-b),$$

where fl means rounding. Based on this property, one can keep track of the rounding error. Implement the Kahan compensated summation for computing $S = \sum_{j=1}^{n} x_j$, the algorithm is given below in Algorithm 1.

Algorithm 1: Kahan compensated summation

```
Data: \{x_j\}_{j=1}^n \subset \mathbb{F}

Result: s_n = \sum_{j=1}^n x_j

j \leftarrow 1, \ e_j \leftarrow 0, \ s_j \leftarrow x_j \ // \ \text{initialization};

while j < n do
\begin{array}{c|c} j \leftarrow j+1 \\ y_j = x_j - e_{j-1} \ // \text{remove compensated error}; \\ s_j = s_{j-1} + y_j \ // \text{perform summation}; \\ e_j = (s_j - s_{j-1}) - y_j \ // \text{restore the rounding error}; \\ \text{end} \end{array}
```

Problem 2.4. Compare your implemented Kahan summation and the built-in summation function sum() under single precision ⁴. Summarize your findings (e.g. less/more accurate or comparable) in the **comments** of the submission.

⁴https://www.mathworks.com/help/matlab/ref/single.html

2.1 Extra Problems for MATH 6630

Problem 2.5. Implement the 2nd method in Problem 1.5 and compare its performance with the Kahan summation under <u>single precision</u>. Summarize your findings (e.g. less/more accurate or comparable) in the **comments** of the submission.