Math 5630/6630 Fall 2024

Homework 0

Tags: Warm up Due Date: 09/05/2024 11:59PM CST

1 Homework Problems

This part of the homework assignment should be submitted via Canvas. You can scan the answers into PDF files, or typeset them in Word or LATEX, then convert/compile them into PDF files.

Problem 1.1. Calculate the first 4 terms of the Taylor series for functions

- (a). $f(x) = e^{\alpha x}$ at point $x_0 = \beta$.
- (b). $f(x) = \frac{1}{x-\alpha}$ at point $x_0 = \beta$, assume $\beta \neq \alpha$.

Problem 1.2. Estimate $\max_{x \in [-\pi/4, \pi/4]} |f(x) - g(x)|$ using the remainder formula of Taylor series.

(a).
$$f(x) = \cos x$$
, $g(x) = 1 - \frac{1}{2}x^2$.

(b).
$$f(x) = \tan(x)$$
, $g(x) = x + \frac{x^3}{3}$.

Problem 1.3. Apply the correct big \mathcal{O} , Ω , Θ notations. Example: $n^1 = \mathcal{O}(n^2)$, $n \to \infty$.

$$n^2 = (n^{2.5}), \quad n \to \infty.$$

$$|\log n| = (n^{1/3}), \quad n \to \infty.$$

$$|\log n|^2 = (n^{1/n}), \quad n \to \infty.$$

$$\csc(n^{-1}) = (\cot(n^{-1})), \qquad n \to \infty.$$

Problem 1.4. Briefly explain why $f(x) = x^4 - 3x^2 + 7x - 6$ has a root inside [1, 2] and [-3, -2]. Do not use any graphs.

Problem 1.5. Apply mean-value theorem to show

$$|\cos(x/2) - \cos(y/2)| \le \frac{1}{2}|x - y|, \quad x, y \in \mathbb{R}$$

Problem 1.6. Let n > 0, show the maximum of $f(x) = (1 - nx)(1 + x)^n$ on $[0, \frac{1}{n}]$ is 1. Use that to show $\frac{nx}{1 - nx} \ge (1 + x)^n - 1, \quad \forall x \in [0, \frac{1}{n}].$

2 Programming Problems

Implement the following program tasks using your favorite programming language. The Python or MATLAB starter kit is available at GitHub Link. Follow the guidelines there for your submission.

Problem 2.1. Write a program to compute the term a_m in the sequence $\{a_n\}_{n\geq 0}$:

$$a_0 = 0$$
, $a_1 = 1$, $a_2 = 1$, $a_{n+1} = a_n + a_{n-1} + a_{n-2}$

Problem 2.2. Write a program to use Laplace expansion (see its definition on page 2) to compute the determinant of a matrix $A \in \mathbb{R}^{n \times n}$, where $1 \le n \le 10$.

Problem 2.3. Write a program with running time ¹ as close to 1 second as possible.

¹Here the "running time" refers to the wall-clock time, see its definition at Stackoverflow.